322552(22)

B. E. (Fifth Semester) Examination, April-May/ Nov.-Dec. 2020

(New Scheme)

(CSE Branch)

ANALYSIS & DESIGN of ALGORITHMS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: All questions are compulsory. Part (a) of each question is compulsory and carry 2 marks.

Attempt any two from part (b), (c) and (d) and carry 7 marks.

Unit-I

- 1. (a) Define all the types of asymptotic notation.
 - (b) State master theorem and explain it using examples.

(c) Solve the recurrence equation using substitution method.

7

2

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor + 16\right) + n$$

(d) Find big oh (0) notation for following equation: 7

(i)
$$f(n) = 10 n^2 + 7$$

(ii)
$$f(n) = 2^n + 6n^2 + 3n$$

Unit-II

- 2. (a) Define divide & conquer method.
 - (b) Use Strassen's algorithm to compute the matrix product.

$$A = \begin{bmatrix} 1 & 5 \\ 3 & 8 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 4 \\ 6 & 2 \end{bmatrix}$$

- (c) Explain Huffmann algorithm with suitable example.
- (d) Solve following graph for single source shortest path using Bellman Ford algorithm.

 322552(22)

Unit-III to had gos S win W (s) 3

- 3. (a) Explain AND/OR graph. 2

 - (b) Explain BFS with suitable example. 7
 - (c) The 6 no. of matrix are given

$$A_1 = 30 \times 35, A_2 = 35 \times 15, A_3 = 15 \times 5,$$

$$A_4 = 5 \times 10, A_5 = 10 \times 20, A_6 = 20 \times 25$$

Solve using chained matrix multiplication method to find an optimal parenthesization of a matrix.

(d) Consider a multistage graph to find the minimum cost path from s to t node.

Unit-IV

4.	(a) Write 2 application of back tracking.	2
2	(b) Explain n queens problem with suitable examples.	7
8	(c) For a given set $s = \{5, 10, 15, 20, 25, 30\}$ and	
	Xz45. Obtained the subset sum problem using back	
	tracking.	7
	(1) E 1 in Hamiltonian avale mahlem uging quitable	
	(d) Explain Hamiltonian cycle problem using suitable	
	example. or bookser notice rightion simum territal content a 468	7
1	symmetra to not a Unit-V seed family on built	
5.	(a) Explain NP Hard, the age to blob a substantial (b)	2
	(b) Write & explain Cook's theorem.	7
CYP	322552(22)	

- (c) Explain 15 puzzle problem with suitable example.
- (d) Given three items along with their weights & respective values as

Item	W	V
I_1	1	2
I_2	2	3
I_3	3	4

for Knapsack of capacity W = 3. Solve using Branch & Bound technique to so as to give maximum possible value. While considering all constraints.